Иногда фотографы называют все линзы «стеклом», однако на самом деле это гораздо более сложные устройства, чем просто стеклянные формы, а многие оптические элементы в современных объективах вовсе изготавливаются не из стекла. К примеру, это может быть флюорит.
Флюорит — это естественный кристалл с тремя особыми свойствами, которые позволяют эффективно применять его в производстве линз. Он хорошо пропускает инфракрасный и ультрафиолетовый свет, имеет сверхнизкий показатель преломления и слабо выраженные дисперсионные свойства.
Что это означает для фотографов? Когда свет проходит через линзу, он преломляется, то есть изгибается. Он также разбивается на составляющие его цвета, совсем как при прохождении через призму. Чем ниже показатель преломления у материала, из которого изготовлена линза, тем меньше будет изгиб света, что обеспечит более высокую четкость изображения. Более того, благодаря слабым дисперсионным свойствам свет не так явно разбивается на составляющие, что позволяет эффективнее справляться с хроматической аберрацией.
Хроматические аберрации свойственны стеклянным линзам. Эта проблема происходит из-за того, что линза не способна привести свет с разной длиной волны в одну точку фокуса, что в худших случаях приводит к появлению цветовой каймы возле контуров объекта. Флюоритовые элементы объектива имеют меньший показатель преломления, что минимизирует этот эффект.
Флюоритовые, асферические, UD и BR-линзы
Еще в XIX веке естественные кристаллы флюорита использовались в линзах микроскопов, однако такие кристаллы слишком малы для производства объективов камер. Чтобы решить эту проблему, компания Canon самостоятельно синтезирует кристаллы флюорита в достаточно больших количествах для изготовления из них элементов объектива.
Следующий этап — это шлифовка флюорита для создания линз, которая также связана с рядом трудностей. Однако инженеры Canon разработали новую технику шлифования, которая обеспечивает создание безупречных флюоритовых элементов объектива. Стоит отметить, что шлифование флюорита занимает в 4 раза больше времени, чем шлифование стекла, и это одна из причин столь высокой стоимости объективов L-серии. Однако эти объективы полностью устраняют хроматическую аберрацию, что позволяет создавать более четкие изображения, ведь свет воспринимается как точка, а не как многоцветное размытие.
Первым объективом Canon с флюоритовым элементом был FL-F 300mm f/5.6, произведенный в 1969 году.
Асферические элементы объектива
Когда-то все линзы были сферическими Это самая простая форма линзы с точки зрения изготовления, однако не лучший вариант для создания резкого изображения, поскольку сферические линзы не могут совмещать световые лучи в одной точке. Это является причиной проблемы, называемой сферической аберрацией. Оптические инженеры обнаружили, что асферическая форма линзы поможет устранить аберрацию этого типа, поскольку изгиб линзы может быть использован для совмещения световых лучей в одной точке. Однако знание теории — это одно, а применение ее на практике — совсем другое.
Степень асферичности настолько мала, что для работы с точностью до 0,1 микрона были созданы специальные производственные процессы. Измерение изгиба требует даже более высокой точности. Лишь в 1971 году мы произвели первый объектив с асферическим элементом. Но он был не идеален. Еще через два года производственные технологии достигли уровня, необходимого для значительного повышения четкости изображения.
В наши дни асферические элементы объектива настолько точно шлифуются и полируются, что даже элементы с отклонением асферичности в 0,02 микрона (1/50 000 часть миллиметра) не допускаются для установки в объективы.
Асферические элементы объектива компенсируют искажение широкоугольных объективов и устраняют (или делают менее заметной) сферические аберрации в объективах с высокой светосилой. Они также позволяют Canon производить более компактные объективы, чем это было возможно ранее, когда использовались лишь сферические линзы.
Шлифование и полировка асферической линзы — это длительный и дорогостоящий процесс, однако нынешние производственные технологии позволяют изготавливать их методом формования. Очевидно, что форма асферической линзы должна быть изготовлена с максимальной точностью, чтобы сформованная линза имела необходимую форму. Инженерам также необходимо учитывать, как меняется размер элемента после охлаждения и полировки стекла.
Хотя производство таких линз все еще остается высокоточным процессом, их формование делает процедуру менее дорогостоящей по сравнению со шлифованием, что делает конечную продукцию дешевле.
Сверхнизкодисперсионное стекло
Разработки низко- и сверхнизкодисперсионного стекла (UD и Super-UD) начались после того, как Canon удалось успешно создать несколько объективов с флюоритовым элементом. Если использовать стеклянные оптические элементы вместо флюорита для устранения хроматических аберраций, конечный продукт станет дешевле, поэтому в Canon решили переключить исследования на создание объективов с улучшенными характеристиками из оптического стекла. За многие годы в объективах Canon применялось более 100 разных типов стекла, каждое из которых имеет особые свойства.
Стекло UD схоже с флюоритом, поскольку имеет низкий показатель преломления и слабо выраженные дисперсионные свойства. Конечно, оно уступает флюориту, однако его характеристики заметно лучше, чем у обычного оптического стекла. Это позволило Canon применять UD-стекло в производстве целого ряда объективов, обеспечивая улучшенные оптические характеристики при сниженной стоимости.
Несколько объективов L-серии оснащены как флюоритовыми, так и UD-элементами для оптимального результата. Эта технология подходит для применения в совершенно разных объективах — как теле-, так и широкоугольных.
Преломляющая оптика синего спектра (BR)
Коротковолновой синий свет представляет собой основную проблему для инженеров, поскольку исправить его траекторию внутри объектива сложнее, чем с зеленым и красным светом — в противном случае образуется синяя цветовая кайма.
Однако в августе 2015 года компания Canon представила EF 35mm f/1.4L II USM — первый объектив с преломляющей оптикой синего спектра BR. Элемент BR — это новый органический оптический элемент с отличными от стандартных моделей дисперсионными свойствами. Он расположен между выпуклой и вогнутой стеклянными линзами, что позволяет управлять траекторией синего света и свести к минимуму хроматическую аберрацию.
Canon продолжает испытывать новые оптические материалы, чтобы расширить возможности проектирования и производства линз и объективов. К примеру, технология многослойного дифракционного оптического элемента Canon сочетает в себе характеристики асферических и флюоритовых элементов и позволяет создавать более компактные и легкие объективы с улучшенными оптическими характеристиками при закрытой диафрагме.
Похожие статьи
Многослойный дифракционный оптический элемент
Многослойный дифракционный оптический элемент — это технология, сочетающая в себе характеристики асферических и флюоритовых элементов. Узнайте больше.
Моторы фокусировки Canon
Очень легко забыть о том, какие технологии отвечают за автофокусировку. Откройте для себя историю создания ультразвукового (USM) и шагового (STM) моторов Canon и узнайте, как они обеспечивают быструю, плавную и тихую автофокусировку.
Стабилизация изображения
Узнайте, как технология стабилизации изображения в объективах Canon обеспечивает четкость фотографий, несмотря на сотрясения камеры, какой режим стабилизации изображения использовать для получения наилучших результатов и многое другое.
Создание объективов Canon — 10 вещей, которые необходимо знать
Пройдите вместе с нами на территорию фабрики Canon по производству объективов, расположенной в городе Уцуномия, и посмотрите на используемые инновации и работу мастеров по производству, которые лежат в основе создания высококлассных объективов L-серии.